原帖由 virgilT 于 2008-9-17 07:17 发表
这是维基对于自然数的定义 = =
我查维基的定义是这样的:
Formal definitions
Main article: Set-theoretic definition of natural numbers
Historically, the precise mathematical definition of the natural numbers developed with some difficulty. The Peano postulates state conditions that any successful definition must satisfy. Certain constructions show that, given set theory, models of the Peano postulates must exist.
Peano axioms
* There is a natural number 0.
* Every natural number a has a natural number successor, denoted by S(a).
* There is no natural number whose successor is 0.
* Distinct natural numbers have distinct successors: if a ≠ b, then S(a) ≠ S(b).
* If a property is possessed by 0 and also by the successor of every natural number which possesses it, then it is possessed by all natural numbers. (This postulate ensures that the proof technique of mathematical induction is valid.)
自然数は0, 1, 2, 3, … とどこまでも続き、その全体は可算無限集合である。また、自然数には 0 を含めないとする流儀もある(詳しくは自然数の歴史と零の地位の節を参照)。0 を自然数に含めるかどうかが大きく問題となる場面においては、いちいちその取り扱いについて断るべきである。
[ 本帖最后由 踏歌行 于 2008-9-17 07:22 编辑 ] |